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Abstract We find a (CF)-mapping of the integral functional of locally Lipschitz
functions ft parametrized by t ∈ T. In the process of obtaining a (CF)-mapping,
the hypothesis of upper semicontinuity of the set-valued map t �→ Cft (x) is needed,
where Cft (x) denotes a convexificator of ft at x. As a corollary of our result, we get
(CF)-mappings which are obtained by Clarke subdifferentials and Michel–Penot sub-
differentials, respectively. Finally, the examples specifically deriving a convexificator
of the integral functional are provided.
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1 Introduction and preliminaries

The development of generalized subdifferential, namely convexificator in nonsmooth
analysis provides sharp extremality conditions and good calculus rules for nonsmooth
functions. The idea of convexificators has been used to extend, unify and sharpen
various results in nonsmooth analysis and optimization.

In this paper, we find convexificators of the integral functional of locally Lips-
chitz functions. As a corollary of our result, we give convexificators of the integral
functional, which are obtained by Clarke subdifferentials and Michel–Penot subdiffer-
entials, respectively.
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Let the function f : � → R be locally Lipschitz on an open set � ⊂ R
n. Then its

upper and lower Dini directional derivatives

f ↑(x, d) = lim sup
λ↓0

f (x + λd) − f (x)

λ

and

f ↓(x, d) = lim inf
λ↓0

f (x + λd) − f (x)

λ

are also Lipschitz as functions of the direction d.
The upper and lower Clarke directional derivatives are defined as follows (see

[2,5]):

f ↑
cl(x, d) = lim sup

x′→x
λ↓0

f (x′ + λd) − f (x′)
λ

(1)

and

f ↓
cl(x, d) = lim inf

x′→x
λ↓0

f (x′ + λd) − f (x′)
λ

. (2)

Since f is locally Lipschitz, the limits in (1) and (2) exist and are finite, and the following
properties hold:

f ↑
cl(x, d) = max

v∈∂clf (x)
〈v, d〉

and

f ↓
cl(x, d) = min

w∈∂clf (x)
〈w, d〉 ,

where

∂clf (x) = co
{
v ∈ R

n | ∃{xi} : xi → x, xi ∈ T(f ), f ′(xi) → v
}

and T(f ) is the set of points of � where f is differentiable. The set ∂clf (x), called
Clarke subdifferential of f at x, is a nonempty, convex and compact set. We note that
the relation that the Clarke subdifferential satisfies is usually known as the strong
convexificator condition.

Michel and Penot proposed the following generalized derivatives (see [6]):

f ↑
mp(x, d) = sup

q∈Rn

{

lim sup
λ↓0

f (x + λ(d + q)) − f (x + λq)

λ

}

(3)

and

f ↓
mp(x, d) = inf

q∈Rn

{
lim inf

λ↓0

f (x + λ(d + q)) − f (x + λq)

λ

}
. (4)

We call (3) and (4) the upper and lower Michel–Penot directional derivative of f at x
in the direction d, respectively. Since f is locally Lipschitz, there exists a nonempty,
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convex and weak∗-compact set ∂mpf (x), called Michel–Penot subdifferential of f at x,
and the following properties hold:

f ↑
mp(x, d) = max

v∈∂mpf (x)
〈v, d〉

and

f ↓
mp(x, d) = min

w∈∂mpf (x)
〈w, d〉 .

Let h : R
n → R be a positively homogeneous function of degree 1. Demyanov

introduced the concept of convexificator (see [3]). A convex compact set C ⊂ R
n is a

convexificator (CF) of h if

min
w∈C

〈w, d〉 ≤ h(d) ≤ max
v∈C

〈v, d〉 , ∀d ∈ R
n.

We get

min
w∈∂clf (x)

〈w, d〉 ≤ f ↓(x, d) ≤ f ↑(x, d) ≤ max
v∈∂clf (x)

〈v, d〉 .

Hence, the Clarke subdifferential of f at x is a convexificator of both functions

h(d) = f ↑(x, d) and h(d) = f ↓(x, d).

Also we have

min
w∈∂mpf (x)

〈w, d〉 ≤ f ↓(x, d) ≤ f ↑(x, d) ≤ max
v∈∂mpf (x)

〈v, d〉 .

Thus, the Michel–Penot subdifferential of f at x is also a convexificator of both func-
tions

h(d) = f ↑(x, d) and h(d) = f ↓(x, d).

We call a convexificator C+(x) (C−(x)) of the function h(d) = f ↑(x, d) (f ↓(x, d)) an
upper (lower) convexificator of f at x. If C(x) is a convexificator of both functions
f ↑(x, d) and f ↓(x, d), we say that C(x) is a convexificator of f at x. If a function f
is quasidifferentiable at a point x, we can construct a convexificator and study the
directional derivative by means of this convexificator. Also we can get the condition
for an extremum by convexificator (see [4]).

Now we define a (CF)-mapping for a locally Lipschitz function, introduced by
Demyanov and Jeyakumar ([4]). A mapping C+ (C−) : � → 2R

n
is an upper (lower)

(CF)-mapping of f on � if for every x ∈ � the upper (lower) convexificator C+(x)

(C−(x)) satisfies the following inequalities

min
w∈C+(x)

〈w, d〉 ≤ f ↑(x, d) ≤ max
v∈C+(x)

〈v, d〉 , ∀d ∈ R
n

(
min

w∈C−(x)
〈w, d〉 ≤ f ↓(x, d) ≤ max

v∈C−(x)
〈v, d〉 ∀d ∈ R

n
)

.

A mapping C : � → 2R
n

is called a (CF)-mapping of f if for every x ∈ � the convex-
ificator C(x) satisfies the inequalities

min
w∈C(x)

〈w, d〉 ≤ f ↓(x, d) ≤ f ↑(x, d) ≤ max
v∈C(x)

〈v, d〉 , ∀d ∈ R
n.
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Finally, we need the following preliminaries for the proof of our main result. Let
� : T → 2R

n
be a set-valued map, where T ⊂ R. We define � to be upper semicontin-

uous at t ∈ T if given ε > 0, there is a δ > 0 such that for all t′ in T with |t − t′| < δ we
have

�(t′) ⊂ �(t) + εB,

where B is the open unit ball in R
n. We assume that (T, T , µ) is a measure space,

where T ⊂ R, T is the σ -algebra of Borel sets ⊂ T, µ is a measure on (T, T ) (which is
not necessarily the Lebesgue measure), and that fi and g are measurable real-valued
functions on T. Then we have

Theorem 1 (See 12, p93 from [7]). Let g be an integrable function on T, and assume
that {fi} is a sequence of measurable functions such that |fi(x)| ≤ g(x) on T. Then we
have

∫

T

lim inf
i

fi ≤ lim inf
i

∫

T

fi ≤ lim sup
i

∫

T

fi ≤
∫

T

lim sup
i

fi.

2 Main result

Let ft : � → R be a family of Lipschitz functions of rank k(t), where t ∈ T ⊂ R and �

is an open set ⊂ R
n. We assume that the map t �→ ft(x) is measurable for each x in �,

and that k is in the space L1(T, R) of integrable functions from T to R.

Lemma 1 The maps t �→ f ↑
t (x, d) and t �→ f ↓

t (x, d) are measurable for each (x, d) ∈
� × R

n.

Proof Since ft is continuous on �, we can choose a sequence λi ↓ 0 such that f ↑
t (x, d)

is the lim sup of

ft(x + λid) − ft(x)

λi
. (5)

But (5) defines a measurable function of t because the map t �→ ft(x) is measurable
for each x in �. Hence f ↑

t (x, d), as the countable lim sup of measurable functions of t,
is measurable in t. Similarly, f ↓

t (x, d), as the countable lim inf of measurable functions
of t, is measurable in t. ��

We define the integral functional f : � → R by

f (x) =
∫

T

ft(x)µ( dt)

and assume that f is well-defined at some point x0 in �. Then we have the following
lemma.

Lemma 2 f is well-defined and Lipschitz of rank K on �, where K = ∫
T k(t)µ(dt).
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Proof Let x be any point in �. Then, since the map t �→ ft(x) is measurable, we have

|f (x) − f (x0)| ≤
∫

T

|ft(x) − ft(x0)|µ(dt)

≤
∫

T

k(t)‖x − x0‖µ(dt)

= K‖x − x0‖.

Hence, f is well-defined and Lipschitz of rank K on �. ��

Theorem 2 Let Cft (x) ⊂ ∏
n[−k(t), k(t)] be a convexificator of ft at x, where k is in

L1(T, R). Assume that the set-valued map t �→ Cft (x) is upper semicontinuous on T.
Then

Cf (x) = co
∫

T

Cft (x)µ(dt)

is a convexificator of f at x and the set-valued map x �→ Cf (x) is a (CF)-mapping of f ,
where co denotes the closed convex hull.

Remark 1 We interpret
∫

T Cft (x)µ(dt) as follows:

To every v in
∫

T Cft (x)µ(dt), there corresponds a mapping t �→ vt from T to Cft (x)

such that the function t �→ 〈vt, d〉 belongs to L1(T, R) and

〈v, d〉 =
∫

T

〈vt, d〉 µ(dt) (6)

for each d in R
n. That is, every v in

∫
T Cft (x)µ(dt) is an element of R

n that can be
written as (6), where the map t �→ vt is a measurable selection of Cft (x).

Remark 2 We note that
∫

T Cft (x)µ(dt) is bounded in R
n, because for every v in∫

T Cft (x)µ(dt), the following inequalities hold:

|〈v, d〉| ≤
∫

T

|〈vt, d〉| µ(dt)

≤ √
n

∫

T

k(t)µ(dt) · ‖d‖

= √
nK‖d‖.

Remark 3 The assumption of the upper semicontinuity of the set-valued map t �→
Cft (x) guarantees the measurability of the functions

t �→ max
vt∈Cft (x)

〈vt, d〉 , t �→ min
wt∈Cft (x)

〈wt, d〉 , (7)

because the upper semicontinuity of t �→ Cft (x) implies that the functions (7) are
upper and lower semicontinuous on T, respectively, and thus measurable on T.
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Proof Let d be any element of R
n. Then

∫
T f ↑

t (x, d)µ(dt) and
∫

T f ↓
t (x, d)µ(dt) are

well-defined by Lemma 1. We assert that
∫

T

f ↓
t (x, d)µ(dt) ≤ f ↓(x, d) ≤ f ↑(x, d) ≤

∫

T

f ↑
t (x, d)µ(dt). (8)

To prove our assertion (8), we choose sequences αi ↓ 0 and βi ↓ 0 such that

f ↑(x, d) = lim sup
αi↓0

f (x + αid) − f (x)

αi

and

lim inf
βi↓0

f (x + βid) − f (x)

βi
= f ↓(x, d),

respectively, which is possible since f is continuous on � by Lemma 2. Then, by the
definition of f , we have

f ↑(x, d) = lim sup
αi↓0

∫

T

ft(x + αid) − ft(x)

αi
µ(dt) (9)

and

lim inf
βi↓0

∫

T

ft(x + βid) − ft(x)

βi
µ(dt) = f ↓(x, d). (10)

Since ft is Lipschitz of rank k(t), it follows that
∣
∣
∣
∣
ft(x + αid) − ft(x)

αi

∣
∣
∣
∣ ,

∣
∣
∣
∣
ft(x + βid) − ft(x)

βi

∣
∣
∣
∣ ≤ ‖d‖ · k(t).

Therefore, by using the hypothesis that k is in L1(T, R), and twice applying Theorem
1 in Preliminaries, we get the following inequalities:

lim sup
αi↓0

∫

T

ft(x + αid) − ft(x)

αi
µ(dt) ≤

∫

T

lim sup
αi↓0

ft(x + αid) − ft(x)

αi
µ(dt) (11)

and
∫

T

lim inf
βi↓0

ft(x + βid) − ft(x)

βi
µ(dt) ≤ lim inf

βi↓0

∫

T

ft(x + βid) − ft(x)

βi
µ(dt). (12)

Also, by the definition of f ↑
t and f ↓

t , the following inequalities hold:
∫

T

lim sup
αi↓0

ft(x + αid) − ft(x)

αi
µ(dt) ≤

∫

T

f ↑
t (x, d)µ(dt) (13)

and
∫

T

f ↓
t (x, d)µ(dt) ≤

∫

T

lim inf
βi↓0

ft(x + βid) − ft(x)

βi
µ(dt). (14)
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Hence, combining (14), (12), (10), (9), (11) and (13), we obtain
∫

T

f ↓
t (x, d)µ(dt) ≤ f ↓(x, d) ≤ f ↑(x, d) ≤

∫

T

f ↑
t (x, d)µ(dt)

and thus our assertion (8) follows.
Now, since Cft (x) is compact for each t and the set-valued map t �→ Cft (x) is upper

semicontinuous on T, the functions

t �→ max
vt∈Cft (x)

〈vt, d〉 and t �→ min
wt∈Cft (x)

〈wt, d〉

are upper and lower semicontinuous as functions of t, respectively, and hence mea-
surable on T. Thus, by the definition of the convexificator Cft (x), it follows that

∫

T

f ↑
t (x, d)µ(dt) ≤

∫

T

max
vt∈Cft (x)

〈vt, d〉µ(dt) (15)

and
∫

T

min
wt∈Cft (x)

〈wt, d〉 µ( dt) ≤
∫

T

f ↓
t (x, d)µ( dt). (16)

Also, by the compactness of Cft (x) and the definition of Cf (x), the following inequal-
ities hold:

∫

T

max
vt∈Cft (x)

〈vt, d〉 µ( dt) ≤ max
v∈Cf (x)

〈v, d〉 (17)

and

min
w∈Cf (x)

〈w, d〉 ≤
∫

T

min
wt∈Cft (x)

〈wt, d〉µ( dt). (18)

Therefore, combining (18), (16), (8), (15) and (17), we conclude that

min
w∈Cf (x)

〈w, d〉 ≤ f ↓(x, d) ≤ f ↑(x, d) ≤ max
v∈Cf (x)

〈v, d〉 .

Hence Cf (x) is a convexificator of f at x and the set-valued map x �→ Cf (x) is a
(CF)-mapping of f as required. ��

The following corollary gives convexificators of the integral functional, which are
obtained by Clarke subdifferentials and Michel–Penot subdifferentials, respectively.

Corollary 1

(a) Let ∂clft(x) ⊂ ∏
n[−k(t), k(t)] be a convexificator of ft at x, where k is in L1(T, R).

Assume that the set-valued map t �→ ∂clft(x) is upper semicontinuous on T. Then

Cf (x) = co
∫

T

∂clft(x)µ(dt)

is a convexificator of f at x and the set-valued-map x �→ Cf (x) is a (CF)-mapping
of f .
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(b) Let ∂mpft(x) ⊂ ∏
n[−k(t), k(t)] be a convexificator, and t �→ ∂mpft(x) be upper

semicontinuous. Then the same result as (a) holds except using ∂mpft(x) instead of
∂clft(x).

Remark 4 The inclusion relation of the Clarke subdifferential of f to the integral of
the Clarke subdifferential of each ft is given in [2]. Also, the similar result for the
Michel–Penot subdifferential holds in [1]. Our proposed integrated convexificator for
f in Theorem 2 can be strictly contained in the Clarke subdifferential of f (see Exam-
ples 1 and 2 below). On the other hand, we note that the Michel–Penot subdifferential
is in general only weak∗-compact.

In the following examples, we specifically derive a convexificator of the integral
functional.

Example 1 Let µ be the Borel measure on T = [1, ∞). We define

ft(x1, x2) = 1
t2

{|x1| − |x2|} .

If we set

Cft (0) = co
{(

1
t2

,
1
t2

)
,
(

− 1
t2

, − 1
t2

)}

and k(t) =
√

2
t2

, then Cft (0) ⊂ ∏
2[−k(t), k(t)] is a convexificator of ft at 0, k is in

L1(T, R), and the set-valued map t �→ Cft (0) is upper semicontinuous on T, and hence
the hypotheses of Theorem 2 are satisfied. Therefore

co
∫

[1,∞)

Cft (0)µ(dt) = co {(1, 1), (−1, −1)}

is a convexificator of f at 0, where f (x1, x2) = |x1| − |x2|. We note that the Clarke
subdifferential of the integral functional f at 0 is

co {(1, 1), (1, −1), (−1, 1), (−1, −1)} .

Example 2 Let µ be the counting measure on T = (0, ∞). We define

ft(x1, x2) =
{ 1

2t−1 {|x1| − |x2|} , t ∈ N,

0, t ∈ T \ N.

If we set

Cft (0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

co
{(

1
2t−1 , 1

2t−1

)
,
(
− 1

2t−1 , − 1
2t−1

)}
, t ∈ N and t: odd,

co
{(

1
2t−1 , − 1

2t−1

)
,
(
− 1

2t−1 , 1
2t−1

)}
, t ∈ N and t: even,

{(0, 0)}, t ∈ T \ N.

and

k(t) =
{ √

2
2t−1 , t ∈ N,
0, t ∈ T \ N,
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then Cft (0) ⊂ ∏
2[−k(t), k(t)] is a convexificator of ft at 0, k is in L1(T, R), and the

set-valued map t �→ Cft (0) is upper semicontinuous on T, and hence the hypotheses
of Theorem 2 are satisfied. Therefore

co
∫

(0,∞)

Cft (0)µ(dt) = co
{(

2,
2
3

)
,
(

2
3

, 2
)

,
(

−2
3

, −2
)

,
(

−2, −2
3

)}

is a convexificator of f at 0, where f (x1, x2) = 2|x1| − 2|x2|. We note that the Clarke
subdifferential of the integral functional f at 0 is

co {(2, 2), (2, −2), (−2, 2), (−2, −2)} .

Remark 5 The convexificators of the integral functional f at 0 obtained in Examples
1 and 2 are strictly contained in the Clarke subdifferentials of f . This shows that cer-
tain results, such as mean value conditions and necessary optimality conditions that
are expressed in terms of the proposed integrated convexificator, may provide sharp
conditions.

Acknowledgement The author is thankful to the referee for his insightful and constructive com-
ments.

References

1. Birge, J.R., Qi, L.: Semiregularity and generalized subdifferentials with applications to optimiza-
tion. Math. Oper. Res., 18(4), 982–1005 (1993)

2. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)
3. Demyanov, V.F.: Convexification and concavification of a positively homogeneous function by the

same family of linear functions. Università di Pisa, Report 3,208,802 (1994)
4. Demyanov, V.F., Jeyakumar, V.: Hunting for a smaller convex subdifferential. J. Global Optim. 10,

305–326 (1997)
5. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt

a/M (1995)
6. Michel, Ph., Penot, J.P.: Calcul sous-différential pour les fonctions lipschitziennes et non-lipschitzi-

ennes. C. R. Acad. Sc. Paris, Ser. I 298, 269–272 (1984)
7. Royden, H.L.: Real Analysis, Macmillan Publishing Company, New York (1988)


	A (CF)-mapping of integral functional of locally lipschitz functions
	Abstract
	Introduction and preliminaries
	Main result


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


